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ABSTRACT

Suppose independent observations come from an unspecified distribu-

tion. Then we consider the maximum likelihood based on a specified para-

metric family by which we can approximate the true distribution well. We

examine the asymptotic properties of the quasi-maximum likelihood estimate

and of the quasi-maximum likelihood. These results will be applied to

model selection problem.
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1. INTRODUCTION

-,The maximum likelihood principle is the basic and useful technique

for statistics. It has a long history and there is quite a bit of litera-

ture treating its asymptotic-properties, e.g., Wald (1949) and LeCam (1953).

These classical results are based on the assumption that the unknown den-

sity function lies in a specified parametric family. However, if this

assumption is not true, do similar results remain valid? Cox (1961, 1962)

considered first such a problem in testing of separated families, (see also

Berk (1966, 1970)). Huber (1967) pointed out that this problem is connected

with robust estimation. White (1982) reviewed this problem and showed the

consistency and the asymptotic normality under the assumptions corresponding

to the regularity conditions in the classical theory. Additional related

references are Akaike (1973) and Foutz and Srivastava (1977).

In Section 2 we give the consistency order of the maximum likelihood

estimator and of the maximum likelihood under the usual conditions with

additional assumptions on higher order derivatives of the specified densities.

Further we treat the testing problem of two families. Section 3 is concerned

with the model selection. We prove the strong consistency of BIC type cri-

teria in a very general setting. The inconsistency of AIC will also be

shown. However, we reconsider the consistency in model selection in Section

4. All proofs of the theorems will be shown in Section 5.
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2. OBSERVATIONS AND FAMILY OF DENSITIES

Let n observations (which may be multivariate) x1, ..., xn (e]Rd)

be independently and identically distributed as the probability density

function g with respect to a fixed measure v onJR d. Suppose that

fIlog g(x)Ig(x)dv(x) < -. Next consider the family of densities

M = {f(xle)le e (DI (2.1)

where ® is a convex set in]RP. Define the quasi-log-likelihood of n obser-

vations as

LnCe) = n Z (xile), x(xle) = log f(xle) (2.2)

and define the quasi-maximum likelihood estimate by = n Recall the
-

Kullback-Leibler information:

I(g;f,e) = (g(x) log{g(x)/f(xle)}dv > 0 (2.3)

provides some closeness from g to f(-1e). We call e and f(.Ie ) the quasi-

true parameter and the quasi-true density in M respectively when eg minimizes

I(g;f.e), e e (B), or equivalently eg maximizes the expected log-likelihood

p%

e(e) - Jg(x)log f(xle)dx. (2.4)

Obviously if g(x) is exactly specified by M as f(x10o), then eg = 0O.

Now we make assumptions on (g,M) which will enable us to study the

asymptotic behavior of maximum likelihood principle.

ASSUMPTION Al. The quasi-true parameter ag is unique and is an interior

point of (.

,}
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ASSUMPTION A2. (a) t(xle) = az(xle)/e and t (xle) = a2t(xle)/36 ae
= , ...,p) are measurable with respect to x eRd for each e e

and continuous with respect to e for each x, where Z(xle) = log f(x e).

(b) I(xle)I, It (xle)I, It a(xle)l, Itaf(xIe)tef(xIe)I are dominated

by the integrable functions with respect to g(x), which do not depend on 8.

ASSUMPTION A3. V(eg) and w(eg) are positive definite where
9 g

V(e) = EgE--(xIe)4irt(xle)] and W(e) = -E I(x e)]
ae 9aeaet(I)

ASSUMPTION A4. There exists the quasi-maximum likelihood estimate of

n which tends to e with probability 1.

ASSUMPTION A5. (a) i ay(xle) = a3(xle)/3ae a 3e Y, (C%,,Y 1, .. ,P)

are measurable with respect to x for each e.

(b) I1(xle)l 2, IIt (xle)l and 1a (xle)I 2 are dominated by integrable

functions with respect to g, which do not depend on e.

Remark on A4. (i) case g e M: Several sufficient conditions ensuring

the assumption A4 are known, e.g., Wald (1949), Huber (1967) and 5e.2 of

Rao (1973).

(ii) case g 0 M: White (1982) showed that Al-A3 with A4': (B) is com-

pact ensure A4. Conditions by Huber, derived without assuming that g is

exactly specified, suffice A4. Also Wald's assumptions can be modified to

this situation by substituting df(x,eo) for g(x)dv and e for 6g, which

meet A4.

If the true density is completely unknown, any of our conditions is

not checked. However, M gives a good approximation to g and M meets condi-
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tions Al-A5 when g(x) = f(xle 0), then (g,M) will satisfy Al-A5.

The assumptions Al-A4 are corresponding to the regularity conditions

in the classical theory. They ensure the strong consistency of 9n on L n().

Further, the asymptotic normality of en can be shown, e.g., White (1982)

and Foutz and Srivastava (1977). If we assume A5 additionally, the con-

sistency order may be evaluated as in the following theorem which will play

a key role in studying model selection criteria.

THEOREM 1. Let n independent observations come from the distribution

with density g and (g,M) meet Al-A5 where M is defined in (2.1). The

orders relating to the quasi-maximum likelihood estimates en and the log-

likelihood are:

(i) en= e + O((n 1 log log n)a2) .s.

(ii) Ln () = L n(e ) + O(n-1log log n) a.s.,

(iii) Ln () = e(e ) + O((n "I log log n)1/2) a.s.,

where eg is defined in Al, L n(e) in (2.2) and e(e) in (2.4).

Note that Theorem 1 is new even if g is exactly specified by M. Under

non-regular case the consistency order of 6n may be different from

O((n1 log logn) 1). However, (ii) still remains valid as long as the

consistency order of en is faster than O((n-llog log n) /2 ) because the

order of (ii) is based on the law of iterated logarithm for t(xnle) + ... +

t(x leg)•
ng9

Cox (1961, 1962) introduced the problem: Which family specifies the

true density? He proposed the corrected likelihood ratio test. Our problem

is: Which family is closer to the trui density? We take a simple likelihood

ratio approach. Let M {fi(x16i)Ii e ()} (i=1,2) be families of den-

d I* IV



6

sities (which may not be separated), and let Ei be maximized expected log-

likelihoods in Mi (see 2.4). Then test the hypothesis

H0 : e0 = l  versus HI: E0 > EI. (2.5)

Assume both (g,Mi) satisfy Al-A5. If H1 is true, from (iii) of Theorem 1

the likelihood ratio

n
X = j11 og{fo(Xj Igo)/fl(xj 161 )} (2.6)

tends to infinity since n 1 X n C - El > 0, a.s., which implies the likeli-

hood ratio can asymptotically find the family closer to g. To make more de-

tailed discussion, we get:

THEOREM 2. Consider the testing hypothesis (2.5) under the conditions

Al-A5. Then the likelihood ratio test is consistent..

Let a2 be the asymptotic variance of n'1 /2 n. Then if d =I0l - 11/0

is large, we can discriminate the families by using small data. However,

when d is small we need a large data. Hence in such a case it would be

preferable to develop similar discussion as the corrected likelihood ratio

proposed by Cox. See also Kent (1986).
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3. MODEL SELECTION

We have shown that the likelihood ratio test is useful when two models

are under consideration. When one has many models as the candidates for

the true density ,g, model selection procedures are utilized. Consider k

models Mi = {fi(xlei)l e( . We treat here the criteria given by the

following forms:

IC(i) = -2nL(i) + cnPi ,  (i I, ...,k) (3.1)

where ei, L ()i ) and pi are respectively the quasi-maximum likelihood esti-

mate, the quasi-maximum log-likelihood divided by n and the number of para-

meters under the model Mi. The model minimizing (3.1) will be regarded as

the best model. Akaike (1973) proposed to take cn 2 (AIC), Schwarz (1978)

and Rissanen (1978) proposed cn = logn (BIC), and Hannan & Quinn (1979) as

cn = Kloglogn(K>O). Suppose the expected log-likelihood of Ml is largest

among those of k families. By Theorem 2, IC(i) (i=l, ...,k) will take

almost surely its minimum value at IC(1) for large n if lim n-1 Cn = 0. Every

criterion above satisfies this condition. Hence we can find asymptotically

which model is closest to q, Further we treat the case that the closest model

Ml (M; say) is divided into several subfamilies (nested case).

Suppose the quasi-true parameter vector 0 can be written as
g

eg = (e*,...,e* , .. o.), e o 0, ... , 01g q, I .. , ,q

and suppose zero vector is an interior point of (D. This assumption implies

that eq+ 1, ..., 6p are redundant. We call J, = {1, ...,q} the quasi-true

model and Jf = (1, ...,p} the full model for simplicity. Let J be a subset

of Jf* Then submodel of M specified by J, say M(J), is defined by

{f(xle(J))M e e (6)) where 0(J) = (00O. O...Oo O...Oe 0...0), J={J' ... qJ }'
l i2 i
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EXAMPLE. Let o(x) = (2)I1/2 exp(-x 2/2), g(x) =/2fo(x-1)+,(x+l))

and p = {C'1(a-(x-u))Ie = (ole2) = (2 eI  -1, - < p < }.

Then eg = (1,0), J, = {11, Jf = {1,2}, M({2}) = {N(p,l)}, M({I}) = {N(O,o2)}.

Suppose (gM(J)) meet Al-A5 and write the quasi-true parameter and

the quasi-maximum likelihood estimate by eJg and '' respectively. Hence

e[ejg] = e[eg] if J=J,; and < e[eg] if J J,. Thus by Theorem 2;

THEOREM 3. Let An be the likelihood ratio Ln(e J0 ) - Ln(6j*). Then

if J =J, A > 0 and Xn = O(n' loglogn), a.s. If J J,, Xfn - e(ejg) -

e(e) < 0.

THEOREM 4. Let Jn be a subset of Jf minimizing IC(J) of (3.1). If cn

satisfies both

lim n- I c = 0 and lim c /log log n = +o, (3.2)
n- n-).

then Jn is a strongly consistent estimator of the quasi-true model J,, i.e.,

lim 0 = J, a.s.
n,- n

Note that if we relax the latter condition of (3.2) as

lim n 'cn = 0 and lim c = + , (3.3)
i- n-* n

then 0n is a weakly consistent estimator of J,, i.e., lim P[J = J.] = 1.
n-* n

n

However, we need extensive calculation for getting Jn when p is large

because there are 2P-1 non-empty subsets of Jf. Our alternate procedure

saves computation. Let J_= {, ... ,j-lj+l, ...,p) for j e Jf* Define

in = {J eJflIC(J-) > IC(Jf)}.

Then by the similar lines of the proof of Theorem 4, we get:

'a.
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THEOREM 5. If cn satisfies (3.2) or (3.3), then Jn is also a strongly

or weakly consistent estimator of J*.

AIC is not consistent because c 2 does not meet (3.2) nor (3.3).n

It will overestimate the quasi-true model. The probability

lim P[JnAIC = J1 > 0, for J mJ, will be expressed using positive linear

combinations of independent chi-square variates, however, its formula is

hard to evaluate in a simple form.

F _ -
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4. DISCUSSION

Our results are based on the i.i.d. assumption. However, the Theorems

1-5 still remain valid even if n observations have weak dependency which

ensures the central limit theorem and the law of iterated logarithm. Hence

our results are quite general.

Next we try to reconsider the consistency in model selection problem.

From the point of view that the model is an approximation with finite pa-

ramaters to the true density with infinite parameters (see Shibata (1980)),

the quasi-true model under M becomes the full model in many cases. Then AIC

also becomes consistent since it does not underestimate the quasi-true model.

Our observations do not provide the difference of AIC and BIC in this case.

Unfortunately our observations provide no difference of AIC and BIC in this

case.

The purpose of the model selection may be to find the model by which

we can get some good prediction for future observation, not the model which

provides a good fitting for given observations. Recall AIC is proposed as

an estimator of the ptedctive density. The consistency is one criterion

for classifying the model selection procedures, and this criterion may not

always lead a suitable conclusion in practical situation.
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5. APPENDIX

Proof of Theorem 1. From Al and A4, 9 exists and is an interior pointn

of Q) for large n. Employing Taylor's expansion we get

0 = aLn(e)/ae = aLn(eg )/ae - Wn (e )(en-e ) + rn (5.1)

where

Wn(e) = -a2Ln(e)/aeaeT: pxp, r = (r r )T,

n nWn In pn

T 2 Te
= ( e ) [a ( -Ln ())/aeae T]( " eg)n g ae1 n g'

e=eg + (n 0 < < 1.

By the law of iterated logarithm and A3, A5, we have

L n(8)/ae = O((n- log log n) 1/), a.s.

w n(e ) = W(eg) + O((n-l log log n)1/2), a.s. (5.2)

because EaL n(e g)/ae = aE gXleg )/ae = 0. From (5.2) and A3, W n(e ) is

positive definite when n is large. Solving (5.1),

en - eg = Wn (eg ) aLn(e)/ae+ rn}.

By A5 there exist H: an integrable function with respect to g and K > 0

such that for any a, a, y = 1, ... , p

a3Ln M/ae ae ae I < 1

I Hxi)< K,

which implies r = 00)(e -e), a.s. Thus

On - eg = O((n-llog log n)11 2 ), a.s.

Again by the law of iterated logarithm we know
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L n(e ) ?A i + 0((n-llog log n) 1 /2) a.s.

where P, e(e 9) is defined in (2.4). From (i) and A2.

Ln () Ln g'' n g Ta n ge e e+ /(^n -eg) Ta 2L n(5)Iaeae T(6n- eg)

=W I nlog log n), a.s.

Hence, I (e^) =Ln(e 9) + L n(6) - L n(e ) 0((n-1 loglog n) 1/2 ), a.s.

Proof of Theorem 2. The asymptotic normality of the likelihood ratio

xof (2.6) is known by Foutz and Srivastava (1977) as

n-1/2 x N[.0 -c 0l ) Y

where a2 = E [lDOg 0f(XIe Og)/f1 (XIelg)1]2 and e1 g (1 = 0,I) are the quasi-true

parameters. Using a consistent estimator of a 2as

C= nl [log{f (x1 1 0 /f(e6 1 J 2

we make the rejection region of H0 by

R n = {x n > n n

where & C is the upper 1O0a-percent point of the standard normal distribution.

Under H1 . or equivalently I= co- cl > 0,

P[R~a)IH1J = Ptn 1/2 (;k -n)>~ 112~iH]- , (~o

because n-1 /2 (x1n-nu) -L- N[0,0 2J and 6 n~n -n
1'/ 2

1v in P.
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Proof of Theorem 4. If J =J., then

IC(J) - IC(J.) = (#J - q)cn - 2n{Ln(0d) - Ln(6d. )}

= log log n[(#J -q)cn/log log n- 2n(log log n)-l Ln (6j) -L n(6j)}]

S+o, a.s. (Theorem 2),

since #J - q > 0 and lim cn/loglogn = +c. This implies for large n,

n- nIt(J > IC(d.), a.s. Hence, Jn E d * "

If J / J.,

IC(J) - IC(J.) = 2n[Ln(ed.)- Ln(eJ)- (#J - q)cn/(2n) ] - +o, a.s.

since L n(ej) - Ln(ej c > 0 and lim n-l c = 0. Hence, Jn J* for large n.

nw
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